
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 21 September 2020
Markus Püschel, David Steurer
Johannes Lengler, Gleb Novikov, Chris Wendler, Ulysse Schaller

Algorithms & Data Structures Exercise sheet 1 HS 20

Exercise Class (Room & TA):
Submi�ed by:
Peer Feedback by:
Points:

�e solutions for this sheet are submi�ed at the beginning of the exercise class on September 28th.

Exercises that are marked by ∗ are challenge exercises. �ey do not count towards bonus points.

Exercise 1.1 Proper Power (2 points).

A natural number n > 1 is called a proper power if there exist two natural numbers a, b > 1 such that
n can be wri�en as n = ab.

Consider the following algorithm that, given a natural number n > 1 as input, decides whether n is
a proper power or not. Note that the algorithm depends on a function f that determines how many
for-loop iterations are performed at most. For now assume f(n) = n.

Algorithm 1 ProperPowerTest(n)
for a = 2, . . . , f(n) do

b← 2
while ab < n do

b← b+ 1

if ISPOWER(n, a, b) then
return “n is a proper power”

return “n is not a proper power”

�e procedure ISPOWER(n, a, b) is called once per iteration of the for-loop and returns true if and
only if n = ab.

Answer the following questions:

a) Let T (n) be the number of calls of ISPOWER that this algorithm makes on the input n. Draw a
graph of T (n) for n = 2, 3, . . . , 30 (i.e., x-axis: n, y-axis: T (n)).

b) Howmany calls of ISPOWER does this algorithmmake in the worst case?�at is, what is the largest
possible number of calls of the procedure ISPOWER that this algorithm can make (in terms of n)?
Which numbers n correspond to this case?

c) Howmany calls of ISPOWER does this algorithmmake in the best case?�at is, what is the smallest
possible number of calls of the procedure ISPOWER that this algorithm can make (in terms of n)?
Which numbers n correspond to this case?

d) �e for-loop in Algorithm 1 ranges from 2 to f(n). Is it possible to perform fewer than f(n) = n
for-loop iterations in Algorithm 1? Determine the smallest value of f(n) such that Algorithm 1
works.

Consider the following algorithm. Note that the algorithm depends on the function f(n), which deter-
mines the number of for-loop iterations. For now, please assume that f(n) = n.

Algorithm 2 ImprovedProperPowerTest(n)
for b = 2, . . . , f(n) do

a← 2
while ab < n do

a← a+ 1

if ISPOWER(n, a, b) then
return “n is a proper power”

return “n is not a proper power”

e) Find a function f such that f(n) is as small as possible.

Hint: �e correct f leads to an algorithm that requires less than d
√
ne calls of ISPOWER.

f) Answer the questions from points a), b) and c) for the second algorithm using your f from task e).

Exercise 1.2 Induction.

a) Prove by mathematical induction that for any positive integer n,

1 + 2 + · · ·+ n =
n(n+ 1)

2
.

b) Prove via mathematical induction that for all integers n ≥ 5,

2n > n2 .

Exercise 1.3 O-Notation.

a) Prove or disprove the following statements:

1) n2 ≤ O(3n4 + n2 + n).

2) log7(n
8) ≤ O(log(n

√
n)).

3) n1/3 ≤ O(n
logn).

4)
∑n

k=0 k ≤ O(n log n).

Hint: You can use the formula from Exercise 1.2.a.

2

b) Place the following functions in order such that if f appears before g, it means that f ≤ O(g). If for
some functions it holds that f ≤ O(g) and g ≤ O(f), please indicate so.

n2 + 2n+ 1, n
n∑

k=0

k,
n

lnn
, n ln(nn),

√
n ln(n), n ln(n2),

n∑
k=0

k2, n ln(2n)

Hint: You can use formulas from Exercise 1.2.a and Exercise 0.1.a.

c)∗ Prove the following statements about n! :

1) n! ≤ nn.

2) ln(n!) ≤ O(n lnn).

3)
(
n
2

)n/2 ≤ n! .

4) n lnn ≤ O(ln(n!)).

d)∗ Let f : N → R+ and g : N → R+. Is it always true that either g ≤ O(f) or f ≤ O(g) or both?
What if both f and g are strictly increasing?

Exercise 1.4 Divisibility check algorithm (1 point).

Consider the following algorithm that, given ann-digit number a > 0with decimal expression an−1 . . . a0,
decides whether a is divisible by 19 or not:

Algorithm 3 DivisibilityCheck(a)
if a < 19 then

return “a is not divisible by 19”
else if a = 19 then

return “a is divisible by 19”
else

a← an−1 . . . a1
b← a+ 2 · a0
return DivisibilityCheck(b)

For example, if we feed the number 347 to DivisibilityCheck, it would go over the numbers

347 → 34�A7 + 2 · 7 = 48 → 4�A8 + 2 · 8 = 20 → 2�A0 + 2 · 0 = 2,

and the algorithm would therefore return “347 is not divisible by 19” since it is called for the last time
with the number 2 6= 19. �e goal of this exercise is to prove the correctness of this algorithm.

a) Show that b is divisible by 19 if and only if a is divisible by 19.

Hint: Write b in terms of a and a0 only.

b) Show that if a > 19, then b < a.

Hint: Consider the di�erence a− b.

c) Prove by mathematical induction that DivisibilityCheck is a correct algorithm.

Hint: Use mathematical induction in the following variant:

3

(a) Prove the statement for some base cases a = 1, ..., k.

(b) Form > k, prove that if the statement is true for all a = 1, . . . ,m− 1, then the statement is also
true for a = m.

�en you can conclude that the statement is true for all natural numbers a ≥ 1.

d)∗ Show that the number of recursive calls made by DivisibilityCheck(a) is O(log a).

4

