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Exercise 1.1 Proper Power (2 points).

A natural number n > 1 is called a proper power if there exist two natural numbers a, b > 1 such that
n can be wri�en as n = ab.

Consider the following algorithm that, given a natural number n > 1 as input, decides whether n is
a proper power or not. Note that the algorithm depends on a function f that determines how many
for-loop iterations are performed at most. For now assume f(n) = n.

Algorithm 1 ProperPowerTest(n)
for a = 2, . . . , f(n) do

b← 2
while ab < n do

b← b+ 1

if ISPOWER(n, a, b) then
return “n is a proper power”

return “n is not a proper power”

�e procedure ISPOWER(n, a, b) is called once per iteration of the for-loop and returns true if and
only if n = ab.

Answer the following questions:

a) Let T (n) be the number of calls of ISPOWER that this algorithm makes on the input n. Draw a
graph of T (n) for n = 2, 3, . . . , 30 (i.e., x-axis: n, y-axis: T (n)).

b) Howmany calls of ISPOWER does this algorithmmake in the worst case?�at is, what is the largest
possible number of calls of the procedure ISPOWER that this algorithm can make (in terms of n)?
Which numbers n correspond to this case?



c) Howmany calls of ISPOWER does this algorithmmake in the best case?�at is, what is the smallest
possible number of calls of the procedure ISPOWER that this algorithm can make (in terms of n)?
Which numbers n correspond to this case?

d) �e for-loop in Algorithm 1 ranges from 2 to f(n). Is it possible to perform fewer than f(n) = n
for-loop iterations in Algorithm 1? Determine the smallest value of f(n) such that Algorithm 1
works.

Consider the following algorithm. Note that the algorithm depends on the function f(n), which deter-
mines the number of for-loop iterations. For now, please assume that f(n) = n.

Algorithm 2 ImprovedProperPowerTest(n)
for b = 2, . . . , f(n) do

a← 2
while ab < n do

a← a+ 1

if ISPOWER(n, a, b) then
return “n is a proper power”

return “n is not a proper power”

e) Find a function f such that f(n) is as small as possible.

Hint: �e correct f leads to an algorithm that requires less than d
√
ne calls of ISPOWER.

f) Answer the questions from points a), b) and c) for the second algorithm using your f from task e).

Exercise 1.2 Induction.

a) Prove by mathematical induction that for any positive integer n,

1 + 2 + · · ·+ n =
n(n+ 1)

2
.

b) Prove via mathematical induction that for all integers n ≥ 5,

2n > n2 .

Exercise 1.3 O-Notation.

a) Prove or disprove the following statements:

1) n2 ≤ O(3n4 + n2 + n).

2) log7(n
8) ≤ O(log(n

√
n)).

3) n1/3 ≤ O( n
logn).

4)
∑n

k=0 k ≤ O(n log n).

Hint: You can use the formula from Exercise 1.2.a.
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b) Place the following functions in order such that if f appears before g, it means that f ≤ O(g). If for
some functions it holds that f ≤ O(g) and g ≤ O(f), please indicate so.

n2 + 2n+ 1, n
n∑

k=0

k,
n

lnn
, n ln(nn),

√
n ln(n), n ln(n2),

n∑
k=0

k2, n ln(2n)

Hint: You can use formulas from Exercise 1.2.a and Exercise 0.1.a.

c)∗ Prove the following statements about n! :

1) n! ≤ nn.

2) ln(n!) ≤ O(n lnn).

3)
(
n
2

)n/2 ≤ n! .

4) n lnn ≤ O(ln(n!)).

d)∗ Let f : N → R+ and g : N → R+. Is it always true that either g ≤ O(f) or f ≤ O(g) or both?
What if both f and g are strictly increasing?

Exercise 1.4 Divisibility check algorithm (1 point).

Consider the following algorithm that, given ann-digit number a > 0with decimal expression an−1 . . . a0,
decides whether a is divisible by 19 or not:

Algorithm 3 DivisibilityCheck(a)
if a < 19 then

return “a is not divisible by 19”
else if a = 19 then

return “a is divisible by 19”
else

a← an−1 . . . a1
b← a+ 2 · a0
return DivisibilityCheck(b)

For example, if we feed the number 347 to DivisibilityCheck, it would go over the numbers

347 → 34�A7 + 2 · 7 = 48 → 4�A8 + 2 · 8 = 20 → 2�A0 + 2 · 0 = 2,

and the algorithm would therefore return “347 is not divisible by 19” since it is called for the last time
with the number 2 6= 19. �e goal of this exercise is to prove the correctness of this algorithm.

a) Show that b is divisible by 19 if and only if a is divisible by 19.

Hint: Write b in terms of a and a0 only.

b) Show that if a > 19, then b < a.

Hint: Consider the di�erence a− b.

c) Prove by mathematical induction that DivisibilityCheck is a correct algorithm.

Hint: Use mathematical induction in the following variant:

3



(a) Prove the statement for some base cases a = 1, ..., k.

(b) Form > k, prove that if the statement is true for all a = 1, . . . ,m− 1, then the statement is also
true for a = m.

�en you can conclude that the statement is true for all natural numbers a ≥ 1.

d)∗ Show that the number of recursive calls made by DivisibilityCheck(a) is O(log a).
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